Search results for " relativistic effects"

showing 2 items of 2 documents

DFT calculation of 1J(119Sn,13C) and 2J(119Sn,1H) coupling constants in di- and trimethyltin(IV) compounds

2008

We have tested several computational protocols, at the nonrelativistic DFT level of theory, for the calculation of 1J(119Sn, 13C) and 2J(119Sn, 1H) spin-spin coupling constants in di- and trimethyltin(IV) derivatives with various ligands. Quite a good agreement with experimental data has been found with several hybrid functionals and a double-zeta basis set for a set of molecules comprising tetra-, penta-, and hexa-coordinated tin(IV). Then, some of the protocols have been applied to the calculation of the 2J(119Sn, 1H) of the aquodimethyltin(IV) ion and dimethyltin(IV) complex with D-ribonic acid and to the calculation of 1J(119Sn, 13C) and 2J(119Sn, 1H) of the dimethyltin(IV)-glycylglycin…

Carbon Isotopes; Dipeptides; Glycylglycine; Hydrogen; Organotin Compounds; Solvents; Tin; Trimethyltin Compounds; Water; Quantum Theorychemistry.chemical_elementInorganic ChemistryOrganotin(IV) DFT NMR relativistic effects tin couplingsComputational chemistryOrganotin CompoundsMoleculePhysical and Theoretical ChemistryBasis setCoupling constantCarbon IsotopesNMR tin derivatives coupling constantsTrimethyltin CompoundsbiologyGlycylglycineWaterDipeptidesbiology.organism_classificationHybrid functionalSolventchemistryTinSolventsQuantum TheoryTetraSolvent effectsTinHydrogen
researchProduct

Karplus-Type Dependence of Vicinal119Sn-13C and119Sn-1H Spin-Spin Couplings in Organotin(IV) Derivatives: A DFT Study

2009

The empirical Karplus-type dependence of (3)J((119)Sn,(13)C) and (3)J((119)Sn,(1)H) couplings in organotin(IV) derivatives has been computationally validated by DFT methods both at the nonrelativistic and scalar ZORA relativistic level. A preliminary calibration of the computational protocols, by comparing experimental and calculated couplings for a Set Of Suitable rigid molecules, revealed their high predictive power: in particular, relativistic results for (3)J((119)Sn,(13)C) have a mean absolute error of just above 2 Hz, over a range of values up to about 70 Hz. The latter protocol has then been used to study in detail the influence of substituents and multiple paths connecting the coupl…

Coupling constantChemistryKarplus equationOrganic ChemistryCarbon-13Scalar (mathematics)Relativistic effectsNuclear magnetic resonance spectroscopyRelativistic effects DFT NMR spectroscopy tinMolecular physicsDensity functional calculations; NMR spectroscopy; Relativistic effects; TinDensity functional calculationsNMR spectroscopyNuclear magnetic resonanceTinMoleculePhysical and Theoretical ChemistryRelativistic quantum chemistryorganotinVicinalSpin-½European Journal of Organic Chemistry
researchProduct